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SRM Witness Test: Final Report

I. Summary of test

The Solid Rocket Motor Witness Test is an exploratory effort to

identify the possible role and utility of infrared thermographic data

and analysis in examining and characterizing the operation of Shuttle

Solid Rocket Motors (SRM's) during static firing tests. It consisted

of acquisition and analysis of infrared thermographic data from two

motor tests at Thiokol I Inc.: the JES-3B (Joint Environment Simu-

lator) test and the DM-9 (Development Motor) static test. During the

field trips associated with the test firings, additional data were

gathered from laboratory samples and test motors. Prior to this

report, preliminary results and a description of the field methods

were reported in "Solid Rocket Motor Witness Test: Interim Report"

by the author. In addition, the laboratory tests of bondline defects

were partly reported in "Numerically Enhanced Thermal Inspection of

Shuttle Solid Rocket Motor Inhibitor/Liner/Fuel Bondline" by the

author and T. Eden, presented at the Review of Progress in Quanti-

tative Nondestructive Examination in La Jolla, August 1988. The main

body of this report is devoted to discussing the data obtained from

the DM-9 test, describing the extraction of numerical temperature

data from the test, estimating parameters which describe the condi-

tion of the motor at the end of the burn, and comparing the estimates

with an engineering description of the SRM given in Thiokol Report

TWR-II869, "Space Shuttle Program SRM Project: Solid Propellant

Rocket Motor Assembly - Disassembly Familiariztion Course" by W. E.

Jones, hereafter referred to as the Jones report. Other information

has come from the engineering description of the DM-9 test inThiokol

Report TWR-17371, "Space Shuttle Development Motor No. 9 (DM-9) Final

Test Report", prepared by D. Garecht.

i.i Objectives

The objectives of the SRM Witness Test were to obtain infrared

image data of a solid rocket motor static test and from the data, to

determine several characteristics of the motor under test. In par-

ticular, information sought was a surface temperature profile, the

interior temperatures at the end of the firing, locations of any

delaminations in the insulation, location of any hot gas leaks, the

terminal burn pattern, and insulation thickness distribution follow-

ing the test. The test was also designed to obtain a record of surface

temperatures up to 500C prior to failure in the event of a cata-

strophic failure. As a secondary objective, data were obtained in a

variety of laboratory and production settings to test the utility of

1. At the time of the test, the name of the company was Morton Thiokol, Inc.
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thermographic nondestructive evaluation (NDE) methods in motor pro-

duction and inspection.

For the secondary objective, several possibilities were iden-

tified for which thermal NDE methods could be applied to on-line

motor production and inspection. Demonstrations have shown the fea-

sibility of inspecting the case-insulation bond prior to loading a

segment with propellant, of inspecting the inhibitor-liner bondline

subsequent to propellant loading, and of inspecting the case-insu-

lation bondline subsequent to propellant loading. These demonstra-

tions have been reported previoulsy.

For the Witness Test primary objectives, it was shown in the

interim report that, in the portion of the motor viewed by the

imager, about 25% of the surface area, no hot gas leaks were observed

and no delaminations were seen. This finding corresponds to the nom-

inal test conditions. The remaining objectives are addressed in sec-

tions 2-5 of this report. The surface temperature image was

successfully obtained over most of the period from just before the

test to three hours after the test, when the motor assembly shed was

repositioned over the motor. A surface temperature profile has been

constructed from this data. Furthermore estimates from the data have

been made for both the terminal burn pattern and the remaining insu-

lation thickness. These estimates show the feasibility of remote

infrared image data for determination of these parameters. The only

objective which was not attained was to determine the temperature

pattern inside the motor at the termination of the burn. The diffi-

culty in determining this temperature pattern is discussed in Section

3.1 of this report.

1.2 Field work

The field work took place during two visits to Thiokol, Inc.

during the months of November and December 1987. These visits were

scheduled to cover the JES-3B and DM-9 tests, respectively. Partic-

ulars of the tests, the equipment and the experimental protocol are

contained in the Interim Report, which also includes the complete

analysis of the JES-3B data.

Some aspects of the experiment are repeated here because they

shed light on the resulting data and the methods used to extract

numerical estimates. The nature of the test is such that safety

required the IR imager to be unattended during the burn and some

time thereafter, while toxic concentrations of combustion products

dissipated. In practice, the imager was unattended from about 30 min-

utes prior to ignition to about 30 minutes following ignition. The

imager settings prior to ignition were chosen to have as large a max-

imum temperature as possible, as the actual maximum expected temper-

ature was not known yet. On regaining access to the equipment

following the burns, the imager was reset to a more sensitive scale



to use as much of the dynamic range as possible under the assumption
that maximum temperatures would not exceed temperatures in evidence
at that time. In the DM-9 static test, there was also a power loss
to the imager subsequent to the firing, so data were lost for an
uncertain amount of time. Thus, the image data consist of two seg-
ments, each of which has a different scale, level reference, and time
reference. Part of the data extraction effort was to reconcile the
references for the two segments.

The DM-9 test was performed during mid and late afternoon on
December 23, 1987, with ignition at 2:50 pm. The air temperature was
below freezing, and the ground was mostly covered by snow. The sky
was overcast with occasional light snow flurries, and a steady wind
blew from the north at an estimated 20 mph. The snow was never heavy
enough to hamper visibility between the imager and the motor.

2. Data extraction

The objective of data extraction was to obtain temperature time
series at representative locations on the SRM. The process is in many
ways complementary to the usual procedure for obtaining temperature
patterns using point sensors. With point sensors, an array of sensor
locations is chosen, individually calibrated sensors are mounted at
the points, temperature data are obtained from the sensors, and spa-
tial temperature distributions are inferred over the entire SRMby
making judicious use of interpolation schemes to fill in between the
point data. When the sensor array is designed, a decision is required
about the expected distribution pattern, and the possibility is
accepted that a small temperature feature will miss the sensor net
or be unduly weighted by falling on a sensor. With image data, the
entire image is scanned with a single calibration and a fixed spatial
resolution, so the response of the image to any sub-resolution fea-
tures is uniform over the image. Then, locations which are represen-
tative of the spatial pattern apparent in the image are chosen to
extract temperature data at particular points, synthesizing the
records obtainable from point sensors.

The data extraction process for the point data synthesis covers
the steps which convert the data from VCRtape information to tables
of values as a function of time. These steps include assignment of
times to the video frames, averaging of frames to produce image data
"snapshots" over fixed periods at nominal times, reconciliation of
nominal times with actual times, extraction of numerical gray level
values, and assignment of temperature zeroes and scales to the gray
levels.

2.1Rerecording and frame time assignment

The first step for the DM-9 data was to rerecord the video cas-



sette data on an AMPEXVTR 80 Video Tape Recorder (VTR) equipped with
a TBC 80 Time Base Corrector. The VTR labels each incoming video
frame with a sequential label which also denotes the nominal time in
hours, minutes, seconds, and frames, there being 30 frames in a sec-
ond. For later reference, each frame may be addressed repeatably by
using its unique time label. In analysis of the tape, the first sta-
ble frame was labeled as zero time, so a local time frame was estab-
lished with a precision of 1/30 second. This time label for each
frame may be superimposed on the video image, permitting an easily
interpreted label to be included on each image produced during anal-
ysis.

The rerecording process for DM-9 was started at about 7 minutes
before ignition. The ignition event is on the frame labeled
0:07:16:16, denoting 0 hours, 7 minutes, 16 seconds and 16 frames
(or 16/30 second). The ignition event further serves as a redundant
time reference point for verifying tape position and counter setting
for a given tape mount. Times prior to the power loss event are thus
referred to the ignition time, the time of greatest physical signif-
icance, with a precision of .03 seconds. The power loss occurred
after the frame labeled 0:29:04:09, so the good time reference was
available for 0:21:47:23 following ignition. The duration of the
power loss is estimated at 13 minutes, with an uncertainty of 1
minute. After power was restored, the scale was reset along with
the threshold level of the imager, a procedure which took an addi-

tional 0:01:22:28. The result is that the data frames show a drop-

out of about 16 minutes, covering the power loss and the subsequent

adjustment period, and the times after the drop-out have a systematic

uncertainty on the order of one minute with respect to those prior

to the drop-out. The frames following the drop-out have good relative

times among themselves. The temperature reference is likewise con-

sistent among the frames prior to and subsequent to the drop-out,

but there is an unknown shift during the drop-out.The nominal sen-

sitivity before the drop-out was 500 C full scale, while after the

drop-out it was 20 C full scales. In subsequent processing, the nom-

inal values were considered actual values. Because of the great dif-

ference in sensitivity, the frames before the drop-out, which shall

be called the early frames, were treated differently than those after

the drop-out, or the late frames.

2.2 Image production

For the data reported here, the steps of image production and

numerical value data extraction are different from the ones described

in the Interim Report. This is because new equipment became avail-

able since that time which permitted digitization and storage of up

to 32 sequential full frames during a single pass of the video tape.

For the early frames, data were captured over three sequential



seconds, one second (32 frames) at a time. Synchronization was accom-
plished by watching the time marker in the image and pushing the
"RETURN" key on a computer keyboard when the appropriate nominal time
was displayed. Repeated captures showed that, with a little practice,
this procedure introduces a delay of 7 frames from the nominal times
with an uncertainty of plus or minus two frames. The captured frames
were then moved into a buffer with larger dynamic range in the com-
puter and averaged. With approximately 92 independent frames
included in each average, the gray value noise level is reduced by
a factor of about 9.6. The noise level for the data in the early
frames is dominated by the least count of the internal digitizer,
which produces a least count level shift of just under 2C on the 500
degree full scale sensitivity setting. With the reduction, the random
component is reduced to 0.2C. Unfortunately, at the low levels of
contrast used in the early frames, the noise was dominated by non-
random digitizer "pattern" noise at the level of about 1.0C, half
the least count level. The early frames are thus self-consistent to
about IC. They were captured at one or two minute increments after
the beginning of firing.

For the later frames, the relation between the least count noise
and the random noise from the imager was reversed. Here, the imager
noise is 0.15C, according to the manufacturer, while the least count
level is .08C. If the limiting pattern noise is at half the least
count level as it was for the early frames, about one quarter of the
random noise level, then an average of 16 frames will reduce the ran-
dom noise to the level of the pattern noise. An average of 32 frames
leaves the pattern noise dominant. Because 32 sequential frames can
be captured by the digitizer at one time, it was possible to capture
the later frames in an automated manner. For these frames, the tape
recorder was run nonsynchronously with the computer, which was con-
trolled by a command language script. The tape time was displayed on
the image, and so captured with the 32 sequential frames. The result-
ing run produced averages of 32 frames, about 1 second, at intervals
which turned out to be uniformly spaced at 5 minutes. Examination of
the data shows that the pattern noise is again limiting and, at
approximately 0.I C, consistent with the estimate.

The resulting set of images comprises 13 early frames and ii
later frames. These frames are separate from the ones used in the
Interim Report, although they come from the same rerecorded magnetic
tape. An example of one of the frames was shown in the interim report
as Fig. 4.4 and is repeated here as Fig. 2.1. Motor images from these
frames are collected in Figure 2.2. To produce this figure, the data
from the split frame format were numerically processed to "reassem-
ble" the rocket and are presented from top to bottom as a time
sequence. Only the late frames are shown in the figure, for the high
gain setting of the early frames produced imager artifacts which
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Figure 2.1. Infrared image of a Space Shuttle solid rocket

motor after static test DM-9. Numbers refer to notes following.

Notes for Figure 2.1

Item Description

o Nozzle. This shroud hides the thermal radiation from the

forward nozzle area from the imager. The aft nozzle area

was intentionally cropped from the image to prevent possi-

ble saturation from the flare during the firing itself.

o Field joint. The slight thermal contrast adjacent to these

joints may carry information about insulation remaining

following the test.

3. Factory joint
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Notes for Figure 2.1 - Continued

Item Description

4 Stiffener ring. These rings are installed on the aft section

only.

5 External Tank (ET) attach ring. This ring is associated with

the aft motor support for the test.

6 Forward motor support for the experiment.

Systems tunnel. The insulation covering this tunnelis both

cooler than the motor in general and has a different emis-

sivity. It produces a cool line in the image.

Instrument wire cable. This cable, which carries many wires

associated with test measurements, blocks the direct view

of much of the bottom of the motor from this vantage point.

Wooden shelter. This housing stands about half way from the

imager vantage point to the motor.

i0 Mound of dirt. This mound blocked the view of about half of

the forward segment of the motor.

ii Other instrumentation. Several other instruments, perhaps

cameras, were mounted close to the motor on the mound

labeled i0.

12 Ghost of imager temperature range selector. Part of the tem-

perature range selector indication, which occupies part of

the left side of the original image, is visible on the right

side. This indication stands for the 20 degree C range set-

ting. (Note: This feature is not seen in Figure 2.1)

13. Concrete Reaction Mass

appear as a spatial pattern which gives the image a "double-exposure"

quality in comparison with the later frames.

Examining the images rather than the artifacts, a general pat-

tern of heating and cooling emerges. The thermal pattern appears seg-

mented, with definite cool places appearing in circumferential bands

which correspond to the joints and stiffeners of the motor. The for-

ward segment divides into two distinct halves, with the forward part

heating quickly and cooling gradually, while the aft part of the for-

ward segment heats quickly and then cools quickly. The center and

aft segments have a similar heating and cooling pattern pass through
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0 hr 33 rain

0 hr 38 min

0 hr 43 min

0 hr 48 min

0 hr 53 min

0 hr 58 rain

i hr 3 min

1 hr 8 min

1 hr 13 min

1 hr 18 min

1 hr 23 rain

Figure 2.2. Sequential montage of "late time" motor images used

in the analysis. The images were assembled numerically from split

frame data similar to Figure 2.1. Times annotated in the images are

frame times, for which ignition was at about 7 minutes.

them. The maximum temperature and the time to reach maximum temper-

ature increase as one progresses aft from the fwd-ctr segment to the

center of the aft-ctr segment. From there to the back of the motor,

the peak temperature declines, but the time to the peak continues to

increase. In contrast to this axial pattern, the circumferential

variation is much smaller except for a cool line caused by an exter-

nal wiring harness and the systems tunnel of the motor. Thus, it is

reasonable to describe the temporal temperature variation of the

motor by obtaining point measurements at each of the segment centers,



corresponding nearly to the temperature maxima in each segment, as
a function of time.

2.3 Numerical value extraction

At this point, a set of pattern-noise limited images has been
obtained for two sets of frames. The frame sets have different zeroes
and different gains. The imager was not moved during the data run,
so all of the images are viewing the same scene. The next objective
is to extract temperature data corresponding to the segment centers
on the image in each of the frames. As a first step, it is useful to
estimate the area which acts as a "point" on the image.

Each digitized frame is represented by a two-dimensional array
of points with 512 points in each direction. According to manufac-
turer's specifications, an imager frame has 150 resolvable points
per line and 200 resolvable lines per frame. This is consistent with
the measurements obtained in our laboratory. The portion of the motor
in the lower image is about 85 feet long, so the resolution is about
85/150 feet, or 7 inches. To achieve accurate temperature readings,
the imager manufacturer recommends a spot diameter of at least 5 res-
olution elements, or about 35 inches. This size is larger than the
joint areas, so while the joints are well located in the image as
cool lines, the imaged temperatures at the joints are not expected
to be accurate. On the other hand, the temperatures in the middle of
the segments should be representative.

To examine this representativeness, a line of data points was
obtained from a transverse scan of the motor cross-section on the
aft part of the center-aft segment. This segment and image were cho-
sen as having a clear view of a region with substantial temperature
elevation and little possibility of detector saturation. It should
ideally produce a square "top hat" response. The line data, shown in
Figure 2.3, show a central region of elevated temperature, with the
bottom of the motor corresponding to the left side of the graph. The
data deviate from the boxcar ideal in several ways. The step-like
appearance of the graph is a result of oversampling the image to pro-
duce the graph. Each step corresponds to a pixel, and four steps to
an Instantaneous Field of View (IFOV) according to the imager spec-
ifications. The minimum in the center of the graph corresponds to
the cool systems tunnel, which is located half-way up the viewed side
of the motor. It plausibly is the response to a very small cool tar-
get. Thus, it can be taken to express the vertical part of the spatial
response function of the camera system, except that the baseline is
not well defined. Similarly, the left hand edge of the temperature
elevation corresponds to the masking of the lower part of the motor
by the wire harness. The right hand edge, corresponding to the tan-
gent view of the top of the motor, can decrease for two reasons.
First is the response function of the system and second is the non-
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Figure 2.3. Temperature pattern across a transverse section of the

motor showing the combined effects of actual temperature

variation, non-Lambertian emissivity response at grazing

angles and instrument spatial response.

Lambertian response of emission at nearly-grazing angles of view.

Such deviations are expected to be _ significant only for viewing

angles greater than 60 degrees to normal, corresponding to only i0

units on the horizontal scale of the graph. The similarity of

response between the right and left edges suggests that non-Lamber-

tian response is not an important consideration in this data. The

manufacturer requires a size of 5 IFOV's to acquire an accurate tem-

perature. This corresponds to 66 counts on the x axis to obtain ar_

accurate temperature• Thus, the narrow plateau between the system

tunnel and the edge of the motor represents the region of accurate

response. The lower temperature maximum value below the systems tun-

nel may be attributed to failure to obtain a full 5 IFOV's of clear

area rather than an actually lower temperature. To get good estimates

of the temperature of each motor segment, then, it is necessary to

sample the data from the portion of each segment in the middle of

the clear space between the systems tunnel and the top edge of the

SRM.

To bring the data from the two sets of frames into parity, the

apparent temperature from the reaction mass is used as a reference,

under the assumption that the reaction mass changed its temperature

relatively slowly during the data acquisition time. Because the reac-

tion mass was sheltered in the moveable building until the morning

of the test, the temperature of the reaction mass cannot be consid-

ered to be the ambient air temperature. Thus, the resulting relative

temperatures are consistent between frame sets, but the zero of the

scale does not represent a thermal equilibrium• The scale change
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between the frame sets was assumed to correspond with the nominal
scale ranges for each setting, i.e. 500 C full scale in the early

images and 20 C full scale in the later images. Emissivity was not

considered in the data reduction, so it is assigned a value of 1.0.

The calculated relative temperatures are thus uniformly low by per-

haps 15 percent. At this point, no need for emissivity estimates has

arisen, and the biased temperatures seem quite serviceable.

An inspection of the split-image format of the data identifies

17 locations which correspond to the center portions of a given seg-

ment or the reaction mass. The motor locations are distributed as

follows: three on the forward segment, four on the forward-center

segment, two on the aft-center segment and seven on the aft segment.

As the segments are each composed of a series of cases separated by

factory joints, each case produces its own temperature maximum. In

addition, the image of the forward segment is split into two parts

by a test stand support, and the aft segment image is similarly

divided by stiffener rings. The locations of the temperature maxima

are summarized in Table 2.1 and Fig. 2.4. The motor firing in the

Table 2.1. Locations at which time series data were extracted from

thermal images of test DM-9 of the Shuttle Solid Rocket Motor.

Point Description Sub-Image Pixel Line

1 Longitudinal Face, Reaction Mass top 142 390

2 Fwd Segment, Fwd Case, Fwd part top 28 368

3 Fwd Segment, Fwd Case, Aft part top 264 366

4 Fwd Segment, Aft Case top 316 356

5 Fwd-Ctr Segment, Fwd Case top 402 330

6 Fwd-Ctr Segment, Aft Case top 480 324

7 Fwd-Ctr Segment, Fwd Case bottom 24 172

8 Fwd-Ctr Segment, Aft Case bottom 104 174

9 Aft-Ctr Segment, Fwd Case bottom 190 174

i0 Aft-Ctr Segment, Aft Case bottom 268 172

ii Aft Segment, Fwd Case bottom 342 162

12 Aft Segment, Ctr Case, Fwd part bottom 372 160

13 Aft Segment, Ctr Case, Ctr part bottom 391 160

14 Aft Segment, Ctr Case, Aft part bottom 409 160

15 Aft Segment, Aft Case, Fwd part bottom 433 158

16 Aft Segment, Aft Case, Ctr part bottom 450 158

17 Aft Segment, Aft Case, Aft part bottom 470 156

18 Low Grey Bar* 1 20

19 High Grey Bar* 512 20

20 Top of Screen Black* 234 448

21 Top of Screen White* 234 468

* These locations are not indicated on Figure 2.4, which has been

cropped for display.
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Figure 2.4. Locations of points on the thermal images of Shuttle

Solid Rocket Motor test DM-9 at which representative time series of

temperature were extracted.

data time scale occurred between 436 seconds and 556 seconds. The

images taken during this period were found to be excessively noisy

either because of imager response to the sound field or because of

unresolvable reflections of radiation from the exhaust flare. The

time series obtained from the remaining images are expressed as tem-

perature relative to the reaction mass as a function of time in Fig.

2.5-2.8. Each of these figures represents one of the four motor seg-

ments, the figures progressing from forward to aft. Figs. 2.5, 2.6

and 2.8 are subdivided into a and b parts, the b part being a mag-

nification of the early data for clarity of the early response. That

each segment has its own temperature cycle is suggested by the dif-

ference in temperature scales in each of the figures.

In Fig. 2.6, depicting the center-forward segment, the data

were taken from both the top and bottom halves of the image, the

center-forward segment corresponding with the image overlap region.
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Figure 2.5b. Magnification of the early part of the temperature

record in Figure 2.5a.

The two data sets should then be duplicates, differences indi-

cating primarily system-induced variations. In Figure 2.6, the agree-

ment is not good between the duplicate samples in the forward part

of the segment, diverging by as much as 8 degrees in the early frames

and by a consistent 1 degree in the later frames. In contrast to this,

the data for the aft part agrees within 1 degree in the early frames

and within about 0.2 degrees in the later frames. The question arises

why the discrepancy? If the data are simply poor, why is one set of

errors so much different from the others? A closer examination of the

differences between Stations 5 and 7 shows them to consist mostly of

two offsets, one applying to the early frame data and the other to

the late frame data. Except for these offsets, the data track as well

as those from Stations 6 and 8. An examination of the data provides



]4

15

10

&
o

n-
-lO

Sta 5

Sta 6

Sta 7

Sta 8

500 1000 1500 2000

Time (s)

Figure 2.6b. Magnification of the early part of the temperature

record in 2.6a.

the answer. The lower image point is located close to the left-hand

edge of the image, and there is a "shadow" of the imager-generated

marking along the left side of the image which indicates the setting

of the "scale" control. This shadow adds a constant bias value of

brightness to the data in the lower image. This constant value is

different for the images taken at different sensitivities, and so

for the early and late images. The agreement between Stations 6 and

8 thus is more representative of actual variations due to the imag-

ing process between essentially identical samples. These variations

indicate the system noise including the imager, the various tape

recorders and the digitizer for the image processor. Fig. 2.9 shows

the difference between the values at station 6 and 8 to illustrate

0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 2.6a. Temperature records extracted from the center-for-

ward Shuttle Solid Rocket Motor Segment during static test DM-9. Burn-

ing occurred between 436 and 556 s.
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Shuttle Solid Rocket Motor Segment during static test DM-9. Burning

occurred between 436 s and 556 s.
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Figure 2.8a. Temperature records extracted from the aft Shuttle

Solid Rocket Motor Segment during static test DM-9. Burning occurred

between 436 s and 556 s.

the system noise. In particular, the differences between the early

frames and the later frames are apparent.

As the discrepancy in Station ? is related to the edge of the

image, it only affects that station, so the remainder of the figures

can be taken to be representative of the temperature variation of

the part of the image they are taken from, save for emissivity cor-

rections. The emissivity corrections should be the same for all the

case segments, as they are painted with the same kind of paint.

The data all show the same general qualitative shape in time, with

a rapid initial heating followed by a gradual cooling back towards

ambient. In addition to this overall pattern, the data between the
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Figure 2.9. Difference between temperature values extracted at

stations 6 and 8. Because these stations represent the same point on

the motor, the difference provides an estimate of the random errors

in the extracted temperature values.

aft part of the forward segment and the forward part of the aft

segment show an intermediate cooling event with a peak value of about

-13 C at the forward occurrence and diminishing and peaking later as

the data move aft. A summary of characteristics of the observed

heating and cooling curves for the motor is given in Table 2.2. It

is this qualitative shape which must first be described by any model

from which parameters might be estimated. If the heating is taken as

the signature of the firing itself, the cooling is plausibly

associated with the fire extinguishing process done immediately

after the firing by flushing the motor with carbon dioxide to

preserve its state at the end of the firing. In shuttle operations,
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Table 2.2. Selected characteristics of time series data from Solid

Rocket Motor test DM-9

Station x location Maximum Time of Max T

(inches) Temperature (C) after burn(s)

2 586 6.9 894

3 639 5.3 414

4 771 6.5 114

5/7 931 4.5 114

6/8 1091 5.5 54

9 1251 10.5 174

i0 1411 15.2 234

ii 1534 24.3 2808

12 1597 23.5 2808

13 1637 24.7 3107

14 1677 23.0 2808

15 1717 16.8 3413

16 1757 15.0 4011

17 1797 8.6 4011

Maximum

Cooling (C)

0.7

1.7

13.2

7.9

6.1

7.6

6.3

0 5

0 5

0 0

1 1

0 5

2 0

2 2

the fires are extinguished by being exposed to the vacuum of near

space, according to the Jones report.

3. Model Formulation

The method of inferring aspects of the state of the interior of

the rocket motor from the temperature record of the motor surface

involves the use of a physically realistic model. The model incor-

porates what are judged to be the most important factors involved

and produces a temperature record, which is then compared with the

observed temperature record. Some of the parameters used in the

model, such as the thickness of the steel shell, are well known,

while others, such as the motor temperature at the end of firing,

are relatively unknown. The unknown parameters are varied until the

modeled temperature record corresponds closely with the observa-

tions. The values of the unknown parameters then become the model

estimates of the unknowns. The model is then operated by giving the

parameters small variations around the values of the fit to examine

the sensitivity of the calculated temperature to variations in the

parameters. Where the sensitivity is small, the estimates of the

associated parameters are correspondingly inaccurate. Particular

care needs to be taken to identify combinations of parameter changes

having equal and opposite changes on the temperature record, for when

such cases exist, a good fit of the model to the data does not deter-

mine values of the parameters, but only establishes relations between

acceptable value pairs of the opposing parameters.
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3.1 Qualitative physical description

The physical model is based on a description of the process by
which heat is generated and transferred to the observed surface. The
process used in this study is that, during the last few seconds of
burning, the insulation is exposed to the hot gasses generated from
still-burning sections of the motor. The time of initial exposure is
determined mostly by the time elapsed between local burn-out and
final burn-out. This exposure changes the phase of some of the insu-
lation layer and removes some by ablation. At burnout, the exposed
insulation surface is heated to incandescent temperatures, and the
dominant mode of heat transfer within the motor is radiation. This
high temperature exchange of radiant energy will tend to bring the
entire exposed surface to the same temperature, which is rapidly
decreasing because of radiation escaping through the nozzle. This
thermal balance dominates the cooling of the motor until the temper-
ature has fallen so low that radiant exchange is no longer dominant.
At this time, only a few seconds after the burn, a certain amount of
heat has been trapped in the insulation, and it is this heat which
passes through the remainder of the insulation and the steel skin to
be observed on the outside surface of the motor. An unfortunate con-
sequence of this sequence of events is that the value of the initial
temperature within the motor following burnout is not able to be
determined accurately from the temperature evolution of the skin,
because much of the heat which was represented by the initial tem-
perature escapes the system as radiation through the nozzle without
affecting the observed surface temperature distribution. During the
non-radiative part of the cooling, the inner layer of charred insu-
lation, which had been in close mutual thermal contact by virtue of
radiant heat exchange, becomes connected only by the much less effec-
tive mechanism of mutual contact with the remaining gas in the motor
which circulates by natural convection. As will be shown below, ther-
mal conduction through the motor skin is even less effective during
this part of the cooling owing mostly to the size of the motor and
the resolution scale of the image data.

3.2 Reduction to one dimension

A great simplification in the thermal analysis is made by
approximating the thermal propagation from the inner part of the
rocket to the outer surface, where heat is observed, by a collection
of one-dimensional problems rather than the three-dimensional prob-
lem it actually is. This simplification is achieved by demonstrating
that the temperature observed at any point on the rocket surface is
associated primarily by the heat injected into the insulation
directly opposite to that surface and not to heat injected into adja-
cent locations. Because the heat transport through the insulation
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and from the adjacent regions is through conduction, it suffices to
compare the characteristic times for the two transports. For the
through-insulation transfer, a characteristic time can be estimated
by noting that it takes up to 3000 seconds after ignition for the
temperature to peak on the surface, in many cases the time being much
less. To estimate the time for heat to reach a point from an adjacent
point, the assumption is made that it travels through the steel part
of the skin, rather than the insulation, and so has a characteristic
time of L2/k, where k is the diffusivity of the D6AC steel used in
the motor and L is about 4 feet, the size, on the motor surface, of
a thermal feature required to obtain an accurate temperature value.
evaluates to about 40 hours. The duration of the data run was about
4 hours. This time is too short for significant heat to transfer from
adjacent locations by diffusing through the steel skin. There is some
experimental evidence to support this conclusion. During the latest
part of the data run, a warm temperature fringe is observed at the
lowest part of the aft portion of the motor. This fringe is attrib-
uted to the cooling water (~40F) which was sprayed onto the underside
of the motor by a deluge water spray system in order to prevent over-
heating from a puddle of aluminum slag which forms during horizontal
static firings. It is only towards the end of the data run that the
heat from the deluge system is visible above the wiring harness.
Thus, both theoretical and experimental considerations support
reduction of the heat transfer problem to one dimension for the
interpretation of thermographic data. For this purpose, individual
one-dimensional models need be generated only for those points at
which verification temperature records are extracted.

3.3 Model formulation

The numerical model package used to formulate the one-dimensional
model for the Witness Test results was TOPAZ2D, a 2-dimensional
finite element code developed at Lawrence Livermore Laboratories.
The actual elements used were rectangular, and the model geometry
consisted of a line of these elements. All of the elements were
chosen to have the same size, and 60 or I00 elements were used to
span the thickness of the motor casing, liner, insulation and char.
One advantage of the one-dimensional model is the resolution
attainable. The thickness of an individual model element is only 0.25
mm, yet the entire model comprises only 122 or 202 nodes. The painted
surface is considered to have negligible thickness; the steel casing
takes 49 elements; the liner, one element, and the insulation, I0 or
50 elements. Of the insulation elements, some number were chosen to
have been converted into a glowing "char" layer, while the remainder
were chosen to be cool for initial conditions, which were taken to
be at the moment of burnout. The heat resident in the char layer was
the forcing heat in the model. The cooling from the CO2 injection
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following the burn was not modeled. The cooling in the model was
chosen to be radiation cooling the char layer, with the radiation
escaping through the nozzle to a sink at 273K, and forced convection
cooling at the outside of the motor where it was exposed to the wind,
also at 273K.

3.3 Numerical values of model parameters

The geometry of the model was taken to represent a section
through the solid rocket motor which is not near a joint, the so-
called "acreage part". It has a steel section of thickness 0.49
inches (1.25 cm) followed by liner material of 0.01 in (0.025 cm).
Inside is NBR covered with a char layer, which is assumed to have
been ablated to some extent. The NBR and the char layer have either
of two total thicknesses, 0.i inches (0.25 cm) or 0.5 inches (1.25
cm). This can be compared to a range in the SRMof between 0.03 inches
(.076 cm) and 1.45 inches (3.68 cm) [values from the Jones report].
The steel has a density of 7830 Kg/m3, a thermal conductivity of 37.4
Watts/ (m-K) and a heat capacity of 460 J/ (Kg-K) . The liner has cor-
responding values of 983 Kg/m3, 0.185 W/ (m-K) and 1963 J/(Kg-K), and
the NBR has values of 1290 Kg/m3, 0.268 W/ (m-K) and 1590 J/ (Kg-K).

The character of the char layer is most uncertain. In the phys-

ical formulation, the char layer is initially heated to 3600C. The

properties of an ablated char layer are not so firmly documented as

those of the parent material, so estimates were made. These were a

density of 860 Kg/m3, 2/3 of the insulation density, a conductivity

of 4.0 W/(m-K) and a heat capacity of 840 J/(Kg-K). The char approx-

imation was made using the assumption that charred material will con-

sist partly of charcoal or amorphous carbon, but that it will be

highly fractured, so its effective density is about half of amorphous

carbon. On the other hand, for the first pass, its specific heat was

given a constant value about twice the room temperature value of car-

bon to account for the increase in heat capacity of carbon with tem-

perature over the temperature excursion of the char. In a similar

vein, the thermal conductivity of the char layer was set approxi-

mately to that for amorphous carbon, which is seen to be much higher

than the insulation yet much lower than the steel.

The heat transfer coefficient for the surface to the atmosphere

was taken as 9.2 W/(m2-K). This value was taken to fit the long term

observed temperature decay, as shown in the next section. In compar-

ison with other values, it is higher than the value given by Carslaw

and Jaeger [Eq. I(6)] for long cylinders in a steady flow, which,

with a wind speed of 20 mph gives 5.23W/(m2-K), yet smaller than the

value measured in our laboratory tests with 1 square foot SRM samples

of 15.48 W/(m2-K) [W. Winfree, pers. comm.]. If radiation is added

to the convective cooling, the observed and theoretical temperature

decays can be made to agree by using an emissivity of 0.85 for the
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motor surface.
Early formulations of the model using conduction only were

found not to dissipate heat rapidly enough using reasonable values
of the thermal parameters to correspond with the data, so the for-

mulation was changed to include radiation out the nozzle. With the

full T 4 radiation law, the model was found to achieve reasonable tem-

peratures with reasonable times and parameters, showing that radia-

tion from the nozzle may be an important physical mechanism for

dissipating the heat remaining immediately following firing. For

this radiative heat transfer, the surroundings were taken to be at

freezing, 273K, while the initial temperature of the interior was

taken at 3600K.

In summary, the final form of the thermal model was one-dimen-

sional in the radial dimension and time dependent using a step func-

tion initial temperature profile, four kinds of material (steel,

liner, NBR and char), forced (linear) convective cooling of the sur-

face with an empirically determined transfer coefficient, and radi-

ative cooling of the interior.

4. Intercomparison between data and models: unknown parameter esti-

mation

The intercomparison between the data and the models has been

only touched on in this work. This is in par_ because much of the

information of interest has been shown to be most evident in the

early part of the cooling cycle, which is strongly affected by the

injection of the carbon-dioxide fire suppressant. A detailed model

of the early cooling would require a description of the amount of

carbon dioxide used and its rate of injection. On the other hand,

enough of an intercomparison has been made that the approach seems

to be feasible, in that some parameters of the observations can be

made to agree with model results for reasonable choices of the model

parameters.

As discussed above, it was found necessary to formulate a model

with the full T 4 variation of heat flux with temperature which cor-

responds to radiative heat transfer. With this term, the model became

inherently nonlinear. The variation of peak temperature with char

thickness was expected to reflect this non-linearity. It was there-

fore a pleasant surprise when the numerical experiments showed that

the peak surface temperatures during the cooldown period varied lin-

early with the thickness of the char layer for both the 0.I inch

thick insulation layer and the 0.5 inch thick insulation layer. In

addition, a two point test with initial temperatures of 2000K and

3600K showed that peak surface temperature was nearly proportional

to initial temperature.

In contrast with the peak temperature estimates, the time esti-

mates to peak temperature are smaller in the model results than in
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the data by as much as a factor of four. It is also apparent that
the early minutes following firing, the time during which the dynamic
range of the measurements was small due to the imager scale chosen,
are the most important for obtaining accurate heating values in the
thin insulation areas. For the thick insulation areas, the discrep-
ancies in time can be related to the insulation thickness by using
a factor, the square of the ratio of actual insulation thickness to
modeled insulation thickness, based on the conductive time constant
for the insulation. A strict application of the square of the thick-
ness ratio is not justified, for the peak of the thin insulation
model results, 80 seconds for 0.i inch thickness, should scale to 25
times that, or 2000 seconds, for the thick insulation. The model
results for the thick insulation peak at only II00 or 1200 seconds
rather than 2000 seconds. For the thin insulation areas, an addi-
tional consideration is the response of the motor to the two thermal
inputs, heating followed by cooling. Ancillary analytic and numeri-
cal modeling showed that a pattern of heating followed by cooling
produces a later peak than a single stimulus and that the late cool-
ing curve corresponds to the net heat applied. In order to calculate
this effect in the motor, information is required describing the
cooling event, such as the amount of carbon dioxide which was applied
to the motor and the time of application. In order to verify such
corrections to the model in the forward and center segments, data
defining the peak temperatures are required during the time period
of the data blackout. In addition, the noise level for the data early
in the test is high because of the temperature range chosen. This
combination of circumstances motivated the dropping of explicit mod-
eling of the carbon dioxide cooling event.

Following the temperature peak at any location, a long period
of cooling occurs. If the assumption of one-dimensionality holds dur-
ing this period, which corresponds to many through skin character-
istic times, the cooling should be exponential, with the
characteristic time for the curve being related to the heat transfer
coefficient between the motor surface and the environment. Condi-
tions were particularly favorable for an exponential cooldown on the
day of the test, for the sky was overcast and a fairly steady wind
was blowing. These conditions promote a constant heat transfer coef-
ficient because cooling is primarily conductive to the air, and solar
radiation is greatly attenuated and diffused. The only difficulty in
evaluating the coefficient from the data lies in the uncertainty of
the value for the ambient temperature to assign to the relative image
data. In order to estimate this ambient temperature, a series of
graphs were made from the late data from Station 9, which appears to
possess the best exponential late cooling curve in the data set. The
results are shown in Figure 4.1, where the natural logarithm of the
temperature rise is plotted as a function of elapsed time for each
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of a sequence of assumed ambient temperatures, spanning the range
from the temperature of the reaction mass to i0 degrees C. colder
than the reaction mass. This range was considered to span the correct
value from other considerations. Two curves were fitted to the data
following the log transformation, a parabola and a straight line.
The coefficient of the second order term of the parabola and the
slope of the straight line curve were noted and are shown in Table
4.1 along with the resulting e-folding time constant corresponding
to each curve. The curvature coefficient, rather than passing through
a clear zero and changing sign, appears to preserve its sign and sim-
ply continue to reduce its magnitude as the offset temperature
increases. The slope of the straight line obtained with a first order
fit, when expressed as a characteristic time, adds a roughly constant
amount (about 900 seconds) for each 2 degree increment in the offset.
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Figure 4.1. Logarithmically transformed cooling curves used to

search for the ambient temperature value. The curves are

extracted from the cooling segment of the time series data for

Station 9.

Table 4.1. Parameters of the cooling curves obtained from the Station

9 data under the assumption of different ambient temperatures.

Temperature Slope Curvature R-squared Characteristic

Offset (C) Time (s)

0 -1.7 E-4 -7.4 E-8 .999 2134 s

2 -8.0 E-5 -2.9 E-8 1.000 3058 s

4 -1.4 E-4 -1.3 E-8 1.000 3947 s

6 -1.6 E-4 -6.1 E-9 .999 4820 s

8 -1.6 E-4 -2.4 E-9 .999 5687 s

i0 -1.5 E-4 -3.6 E-10 .999 6548 s
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The correlation coefficient for the fits is between 1.0 and 0.999
for the three greatest offsets, indicating that all these lines fit
the data well. The procedure, then, provides a lower value for the
offset of ambient temperature from the reference temperature, but

does not give a clear indication of an upper limit. Because other

indications for the ambient temperature produced values of about 5

degrees below the reference, the value of 4800 seconds for the time

constant, close to the 4820 seconds obtained from the 6 degree off-

set, was used for the model work. This value resulted in a total heat

transfer coefficient of 9.1 W/(m2-K). Theoretical agreement is

obtained by using the formula for forced convection in Carslaw and

Jaeger [Eq. I(6)] with a wind speed of 20 mph and the formula for

radiant heat flux in Carslaw and Jaeger [Eq. 1.9(ii)] using an emis-

sivity estimate of 0.85. With these values, the calculated heat

transfer coefficient is 9.20 W/(m2-K), and the radiant transfer

accounts for 43% of the total. While the close numerical agreement

is partly the result of a fortuitous choice of parameters in the

equations, the measured value agrees in general with theoretical for-

mulas, and the substantial contribution of radiant heat to total heat

transfer is strongly indicated by the calculation.

The very long time behavior of the model contains an artifact,

which is expressed as a lowering of temperature below the ambient

temperature at long times. For example, at a time of 3 hours 20 min-

utes following ignition, the model shows a surface temperature of

261K, 12 degrees below ambient. An examination of the flux within

the model shows that the steel portion is acting as a distributed

heat sink, causing the lowered surface temperature. This response is

non-physical. The value of the artificial flux is small with respect

to fluxes during the period of interest, so it was permitted to

remain, as it is not considered to affect any of the results or con-

clusions of this study.

5. Discussion

The first experiment run with the model, once parameters had

been chosen, was to keep the grid and all parameters and boundary

conditions fixed while permitting an increasing number of the insu-

lation elements to become char and attain an initial temperature of

3600 K. This process models the increase of ablation depth which

occurs on successively longer exposure of the insulation to the hot

gasses. The resulting temperature evolution at the viewed surface is

shown in Fig. 5.1a for the 0.i inch thick insulation and Fig. 5.1b

for the 0.5 inch insulation. The peak temperatures and times to peak

temperature for the model are shown in Table 5.1. It is readily

apparent that the peak temperatures are sensitive to the depth of

the char layer. This is not surprising, for the model formulation is

such that thicker char layers introduced correspondingly greater
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Figure 5.1a. Model results for an initial insulation thickness of 0.i

inches. Model parameters were chosen to represent a thin

insulation segment of the Shuttle Solid Rocket Motor.

310 • " " " I " " " " I " " " I " " " " I " " " " l " " " "

300 / Char_ickness: 0.05 in

_ 90

_- 280

0.01 in

270 .... I .... ' .... , .... ,
0 1000 2000 3000 4000 5000 6000

Time (seconds)

Figure 5.1b. Model results for an initial insulation thickness

of 0.5 inches. Model parameters were chosen to represent a moderately

thick insulation section of the Shuttle Solid Rocket Motor.
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Table 5.1. Model output characteristics for varying combinations of

char thickness and insulation thickness. Model parameters were

chosen to represent the Shuttle Solid Rocket Motor.

Thickness of Thickness of Number of Maximum Time of temperature

Remaining hot char layer hot nodes temperature maximum (s)

Insulation (in) (in) Rise (C)

0.06 0.04 4 42.2 80-90

0.07 0.03 3 29.8 89-99

0.08 0.02 2 17.6 91-101

0.09 0.01 1 5.5 89-99

0.45 0.05 5 32.0 1055-1155

0.46 0.04 4 24.8 1039-1139

0.47 0.03 3 17.3 985-1085

0.48 0.02 2 9.9 987-1087

0.49 0.01 I 2.6 814-914

amounts of heat in excess of that contained at ambient temperature

into the model. The effect is similar to that found with elevated

initial temperatures. A plot of peak temperature versus char thick-

ness, Fig. 5.2, shows that the relationship between the two is very

linear, with a zero point of about one half of a model element. The

correspondence between char thickness and heat input accounts for

the one-half element discrepancy, for the model interpolation of the

initial step temperature distribution includes a linear temperature

distribution in the innermost char element, which has a temperature

of 3600 C. on one side and 0 C. on the other side. Thus, this element
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Figure 5.2. Model values of peak temperature rise as a function of

char thickness. The two curves are for different initial

insulation thicknesses. Model parameters have been chosen to

represent the Shuttle Solid Rocket Motor.
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contains only half the heat of the rest of the elements. What is
remarkable is that the linearity is preserved despite the nonlinear
radiation dominance of heat loss at early times. For the two cases
studied, having insulation thicknesses of .I inches or .5 inches,
the slope of the peak temperature vs. char thickness line varies from
1223 to 737 C./inch of char, the ratio of slopes being 0.603. This
is somewhat smaller than the ratios of total heat capacity in the
two cases, 0.702, which would be expected by simply distributing a
fixed percentage of heat from the initial conditions uniformly
through the thickness of the material in the model. The difference
can be ascribed to additional heat loss occurring in the thick insu-
lation because its time to peak is greater than for the thin insu-
lation.

The linear relation between peak temperature and char thickness
in the model suggests that char thickness in the motor can be esti-
mated if the amount of heat remaining in the case following burnout
can be estimated. The amount of heat in the motor at a given position
is well represented by the peak temperature at that position because,
with the exception of the thick insulation in the aft portion of the
motor, the steel case accounts for the preponderance of the heat
capacity, and the inner insulation and char have come into thermal
equilibrium with the case at the time of peak temperature. The
amounts of heat measured at varying positions are not strictly com-
parable, because the the peak temperatures occur at different times
for different parts of the motor. To bring the estimates into parity,
it is necessary to express the heat amounts at a common time, such
as right after burnout. To do this, allowance must be made for the
different times of exposure to the atmosphere. Fortunately, the rate
of cooling can be estimated from the long-time behavior of the cool-
ing curves. Once this is known, if ablation/erosion has been minimal,
the remaining char thickness can be calculated from a formula (Eq.
5.1) which requires only the original insulation thickness, the peak

D(n+ 1) Tp (C 1D 1 + C2DI)
3 = (5.1)

3600f1C3exp( -Rtp ( ) Tp (C3 C2)
k,C.1D 1 + C2D I + (C 3 - Cz) D3 n)

temperature rise and the time of the peak temperature rise. In this

formula, subscripts 1,2 and 3 correspond to the steel skin, the insu-

lation and the char respectively. Tp is the peak temperature which

occurs at time tp. The subscript I corresponds to the original insu-

lation. D's are thicknesses and C's are volumetric heat capacities.

R is the heat loss rate, and fl is the fraction of the total heat

remaining following the initial radiation loss. The unknown in the

equation is not entirely isolated on the left hand side, so the equa-
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tion is solved iteratively, with the parenthetical values in the
superscripts corresponding to estimate numbers. Iterations are con-
tinued until the difference between successive estimates is suffi-
ciently small. A computer program, to perform this calculation has
been written and is included, along with a more extensive derivation
of Eq. 5.1, in the appendix. The results of the calculations for DM-

9 are shown as Fig. 5.3 in comparison with the corresponding nominal
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Figure 5.3 Estimates of relative char thickness, expressed as total

heat, as a function of position on the Shuttle Solid Rocket

Motor. The nominal time of exposure of the insulation to the

flame is shown for comparison.

times of burnout as estimated in the Jones report. There is a general

agreement of trends in the center of the motor, but the estimated

exposure time at the ends of the motor is not nearly enough to agree

with the nominal exposure time there. In the forward section, where

the star grain is located, there are two factors which may account

for this difference. First, the cooling by injection of carbon diox-

ide has not been taken into account in the model estimate. Second,

after the star has burned out, the forward section becomes a "dead

end", with no recently burned gasses necessarily passing it on their

way to the nozzle. Thus, its interior temperature following burning

may be lower than the remainder of the motor. At the back of the

motor, the observed temperatures are once again much too low. This

can be attributed partly to the cooling process following the burn

and partly to the erosion of the insulation in the aft section of

the motor. The remaining trend of total heat within each part of the

motor, in regions away from the joint areas, does correspond quali-

tatively with the nominal times of exposure following burnout of each

segment. In particular, the large increase in peak temperatures and
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calculated char thickness in the aft section with respect to the rest
of the motor corresponds with the early burnout in the aft section.

Another feature of the data is that the times before the peak
temperature values vary substantially from the front to the back of

the motor. As the time of exposure to hot gasses is much smaller than

the time to the peak temperature, the evolution of the temperature

curve follows a general curve which scales roughly as the square of
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Figure 5.4. Estimates of relative thickness of remaining insulation

from delay times of peak surface temperature following the burn

in Test DM-9 of the Shuttle Solid Rocket Motor.

the thickness of NBR. The time to the peak temperature thus should

provide an indication of the square of the thickness of the NBR

remaining following the burn. A plot of the square root of the time

to peak temperature versus position on the motor is given in Figure

5.4. This figure indicates that the least remaining insulation thick-

ness is in the aft part of the forward segment and the center seg-

ments, with the forward part of the forward segment and the aft

segment each having greater thickness of remaining insulation. To

discriminate more closely between the thin insulation regions, more

time resolution is required in the early frames of the data.

The temperature evolution in the thin insulation portion of the

motor showed a more definite cooling event than in the thick insu-

lation portion. An analytic model of heating followed by cooling was

constructed to examine if this behavior was consistent with the sce-

nario of brief heating followed by a longer period of cooling, the

differences in response being primarily associated with the length

of exposure time to the heating and the depth of the remaining insu-

lation. The model included a heating and cooling pulse at the surface
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of a semi-infinite insulation layer with thickness being examined by
solving at different depths in the insulation. The early peak rep-
resenting the difference between exposure heating and net heating
vanished rapidly with insulation thickness, and was substantially
gone at 0.3 inches, in agreement with the data. For thicker insula-
tion, the response due to the total pulse became indistinguishable
from that due to a single pulse carrying the same net amount of heat,
in agreement with the single temperature maxima seen in the aft seg-
ments.

The only major characteristic in the data which is not quali-
tatively reproduced in the model is the secondary rise in temperature
in the center sections. As this temperature rise is larger towards
the back of the motor and as the aft section is the most likely source
of the heat, it is apparent that the one-dimensional model is not
strictly justified. There is heat exchanged between sections of the
motor on the interior surface by either gas conduction or by radia-
tion, which is not included in the models. To include this exchange,
a model would need to be constructed consisting of a series of one-
dimensional models attached by an appropriate transfer mechanism at
one end. Short of this, heat transfer between motor segments by radi-
ation or conduction in the motor interior is identified as being the
greatest source of systematic error in the one-dimensional model.

6. Conclusion and recommendations

The Solid Motor Witness Test was conceived as a method of using
infrared image data to evaluate some of the parameters of a solid
rocket motor during a static firing. It has been shown that it is
possible to extract meaningful and significant temperature data from
the outside of the case of the motor during and subsequent to a fir-
ing. In doing this extraction, it has become evident that a given
imager can be optimized either to capture extreme conditions in the
event of a catastrophic failure or to document nominal operation dur-
ing a more routine test, but not both. The data which were extracted
were self consistent, but not corrected for emissivity, which was
considered to be a constant over the motor. The justification for
this assumption is that the paint on the surface was all fairly new
and of the same type. If this were not true, a separate experiment
would be required to obtain an emissivity map over the motor or to
repaint the motor for the purpose of obtaining uniform, high emis-
sivity. In some failure conditions short of pressure release, surface
temperatures might become high enough to scorch the paint. The ther-
mographic method would document such changes, but the ability to
obtain self-consistent temperature data would be problematical in
scorched areas. An additional requirement for obtaining d_ta is that:
the motor be in the view of the imager. In the case of DM-9, the
viewed area covered only between 20% and 30% of the motor surface.
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The ability to use mirrors to increase the effective view of the
imager by matching the aspect ratio of the motor more closely to that
of the image was demonstrated. The use of an imager with a cooled
detector requiring filling at two-hour intervals, while inconve-
nient, was demonstrated to be practical for static firings. To obtain
nearly complete coverage, two imagers mounted on opposite sides of
the motor are recommended. During the firing itself, the intense
emission from the flare was not a problem for the imager because the
flare was kept outside the image and because the cooled mercury-cad-
mium-telluride detector used in the imager has a short recovery time
from extreme saturation. However, the temperature measured during
firing was compromised by reflections of the flare by objects in the
field of view. The consistency of the data was achieved partly by
the use of a reference target in the field of view to allow correction
for short term drift in the data. To improve the correction further,
it is recommend that two large reference targets maintained at dif-
ferent known temperatures be included in further measurements with
direct measurements taken of their temperatures. These targets would
establish a reference base temperature and a temperature scale marker
which could be used to maintain the accuracy of image contrasts in
subsequent processing steps. By large is meant that the targets sub-
tend at least 5 IFOV's in each of their two image directions. This
can be accomplished by using large targets near the motor or smaller
targets near the imager.

A physical model has been constructed which permits substantial
data interpretation to be done using a substantially simplified
approach. It reduces the heat flow in the motor case to one dimension
so that the temperatures viewed on the outside of the motor result
from heat inputs and material properties in the case directly inside
of the viewed portion of the case rather than being influenced by
adjacent segments. The physical justification for this simplifica-
tion is the relative closeness of the inside of the motor to the
surface compared with the large diameter and length of the motor.

Numerically, the reduction to one dimension greatly simplifies
the formulation of a model by reducing the general problem of for-
mulating a three-dimensional model of the entire motor to the for-
mulation of a series on one-dimensional models at only the points
for which temperature data are available. The complexity of the mod-
eling effort is thus substantially reduced accompanied by a substan-
tial improvement in the verifiability of the model. One advantage is
that the model was formulated with much higher resolution than a
full-motor model. The model simplicity was limited, however, by the
nonlinearity imposed by radiative heat exchange which was found nec-
essary to describe the initial cooling from the incandescent initial
temperatures. The cooling used to extinguish the residual burning
within the motor for the static test was not included in the model.
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An analytic model to examine the effects of cooling indicated that
this omission was relatively insignificant in the aft motor segment,

where the insulation is thick and exposure times are long. The pri-

mary effect is to change the amplitude of the response to be that

associated with net heat input rather than that associated with the

burning only. In the forward and center segments, a residual heating

spike was seen to propagate to the outer skin, the height of the

spike depending on the thickness of the insulation. After several

tens of minutes, the model failed to calculate an observed secondary

heating in the central motor segments, the temperature rise increas-

ing in the aft direction. This heating is attributed to conductive

or radiative exchange between center and aft segments, the aft seg-

ments remaining considerably warmer than the remainder of the motor

at this time.

The DM-9 test suffered a primary failure of a portion of the

nozzle structure located in the interior of the motor. There was no

indication of this failure apparent in the thermal data. Examination

of the location of the failure suggested that no thermal indication

would be expected of the failure due to the extremely long conductive

path between the failed part and the viewed motor surface.

Of the motor parameters of primary interest, the results show

that the interior temperature at burnout is difficult to estimate

from the exterior temperature patterns. On the other hand, the expo-

sure time, related to the time of burnout, and the thickness or

remaining insulation are reasonably correlated with parameters of

the thermal cooldown data. In particular, the anomalies in exposure

time associated with the fin pattern in the forward segment are

expressed as thermal patterns on the motor surface. Analysis of ther-

mal data may be of use to motor designers interested in these prop-

erties, which are obtained at present through point sampling methods

only. The data may be used to interpolate between or reduce the num-

ber of points at which samples of char thickness and remaining insu-

lation thickness need to be taken during the evaluation of a motor

test.

7. Acknowledgements

The work reported here was supported financially under Task

Assignment 3 of NASA Contract NASI-18347 between NASA Langley

Research Center and the College of William and Mary. Field work was

done at the Wasatch Facility of Thiokol, Inc. Brigham City, Utah. In

particular, Mr. Tim Eden in the R&D Laboratory and Mr. Fred Wilscn

of the Photography Department provided both access and support which

were necessary to obtain the data. Other Thiokol personnel in the



33

above departments, Quality Assurance and Production facilities also
provided excellent cooperation and support. Besides colleagues in
the Instrument Research Division at NASA Langley Research Center,
support and help were obtained from the Structures Division and from
NASA Marshall Space Flight Center. Helpful review comments were
obtained from D. Garecht, D Nisonger and E. Mathias of Thiokol, Inc.

and S. Ravzi of Marshall Space Flight Center.



34

Appendix: Program CharThick

This program was written to implement evaluation of Equation
5.1, which uses easily evaluated parameters from a temperature record
to make an estimate of the thickness of the char layer in a solid
rocket motor. It is based on equating two estimates of the heat
remaining in the motor at the time of observation of the temperature
peak and expressing the resulting formulas in terms of known quan-
tities as far as possible. The geometry is considered locally to be
represented by three slabs, representing the steel case, the remain-
ing insulation and the char layer referred to with subscripts 1,2
and 3, respectively. The material properties consist of slab thick-
nesses, denoted by D, and volumetric heat capacities, denoted by C.
The heat estimates are Qinit, the heat in the char layer a few seconds
following the end of burning (time = 0), after the incandescent radi-
ation has finished dumping large amounts of heat out the nozzle, and
Qobs, the amount of heat, by that time having uniform temperature,
Tp, through the thickness of the three slabs, observed at the time
of peak temperature (tp). Before equality of the two heats can be
asserted, allowance must be made for the cooling of the motor between
the times of 0 and tp. A crude allowance is made by assuming that the
exponential cooling rate, R, found directly from the later data can
be applied backwards to zero time. Thus, the basic equation is

Qinitexp(-Rtp/CT) = Qobs"

in which C T is the total heat capacity of the entire section. Now Qi

= TiCiDi, where i represents any subscript. At time zero, all the

heat is located in the char layer, and it can be accounted for as

Qinit = T3C3D3" D3 is the quantity sought, and C 3 is known. T 3 is the

temperature of the char following the burn, and is expressed as 3600

fl, where the interior reaction temperature is taken as 3600C and fl

is the remaining fraction of heat at zero time, estimated as 0.828

from numerical model experiments. For the right hand side, Qobs =

CTT p. The total heat capacity is C T = ClD 1 + C2D 2 + C3D 3 . In this

expression, D 2 and D are both unknown. The assumption of no erosion

is made at this point to assert that D 2 + D 3 = DI, the initial insu-

lation thickness, which is known. Thus, one can express the total

heat capacity as C T = ClD 1 + C2D I + (C 3 - C2)D 3 . When this is done,

all of the D 3 terms can be grouped except the one in the denominator

of the exponential, which has a fairly small effect because of the

preponderance of the steel case in determining total heat capacity

over much of the motor. The equation cannot be quite solved analyt-

ically, but if an initial estimate is made for D 3 by ignoring the D 3

value in the exponential, and then successive estimates are made by

using the previous estimates in the exponential, the iteration con-
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verges quickly to a consistent value of D3. This is represented as
Eq. 5.1, and the following program implements the iteration scheme
in FORTRAN. In this program, the values for known material and rate
constants are given directly in their respective declarations, and
they may be changed to represent other situations.

C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C

C

C

C

C

C
C

Program CharThick.For
Version CSWI.0 - Started 15 December 1989
This program evaluates a simple recursive model to calculate
the thickness of the char layer in a solid rocket motor from the
maximum temperature and time to reach maximum temperature in a
static test. The formula is

Tp* (CI*DI + C2*Di)
D3 -

T0*fl*C3*exp[-R'*Tau / sum(Cj*Dj)] - Tp*(C3-C2)

As the unknown, D3 is also part of the sum in the exponential, it

is evaluated recursively starting with D3 : 0 until D3 is stable

under iteration.

Implicit none

Formula Variables:

Real*4 TO /3600./

Real*4 Tp

Real*4 fl /.828/

Real*4 R /9.1/

Real*4 alpha /.762/

Real*4 Rprime

Real*4 Cl /3.60e6/

Real*4 C2 /2.05e6/

Real*4 C3 /0.72e6/

Real*4 D1 /1.24e-2/

Real*4 D3

Real*4 Di

Real*4 tau

i Initial Temperature of interior (K)

I Observed peak temperature

i Fraction of initial heat remaining

' after initial radiative cooling

i Heat loss rate to environment in

i (W/(m** 2-K)

! Ratio of average to peak temperature

r over time to peak temperature

w loss rate to environment

i Volumetric heat capacity of

I steel (W/ (m**3-K)

, ........ insulation

w ,, " " " char

f Thickness of the steel skin (m)

f Thickness of the char layer (m)

i Initial thickness of the insulation

t in (m)

f Time of peak temperature

Real*4 Num, Den,Arg

Real*4 Ratio

Real*40ldD3

Real*4 epsilon /.00001/! Incremental variation between

t iterations

!threshold for calculation termination

t Intermediate Calculation variables

t Trial variation between interations

i Result of previous iteration
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C
C
C

C
C
C

C
C
C

C
C
C
C
C
C
C
C
C

Integer*4 i
Integer*4 MaxI /i00/

t Iteration Counter

t Run-away iteration stop

General Initialization

RPrime = R * alpha

Get Information and initialize calculation

I00 Continue

OldD3 = 0

Print *, 'Program CharThick - Char thickness estimation.'

Print *, 'Enter negative insulation thickness to stop.'

Write (*,' ($'' Enter insulation thickness (m) : '') ')

Accept *, Di

If (Di .it. 0) Goto 200

Write (*,' ($'' Enter peak temperature rise (K) : '') ')

Accept *, Tp

Write (*,' ($'' Enter time of peak temperature (s) : '') ')

Accept *, Tau

Perform Calculation

i=0

Ratio = 1

D3 = 0.

OldD3 = 0.

Do while (Abs(Ratio) .gt. epsilon)

i = i + 1

If (I .gt. MaxI) then

Print * ' Maximum iteration count exceeded.'
I

Print * ' Present D3 is: ',D3F

Print * ' Last D3 is: ' OldD3I I

GoTo 100

End i f

OldD3 = D3

If documentation of parameter values is desired, remove

the comment status of the following statmements.

Print *,

Print *,

Print *,

Print *,

Print *,

Print *,

Print *,

Tp = ',Tp

Cl = ',Cl

C2 = ',C2

D1 = ',D1

Di = ',Di

RPrime = ',Rprime

Tau = ',Tau
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C
C

C
C

C

C
C
C

Print * ' TO = ', TOF

Print * ' fl = ', flF

Num = Tp* (CI*DI + C2*Di)

arg = (-RPrime*Tau)/ ( (CI*DI + C2*Di) + (C3-C2)*OIDD3)

Print * 'Num = ', num;

Print *, 'Arg =', arg

Den = T0*fl*C3*exp(arg) - Tp*(C3-C2)

Print * 'Den = ',Den!

D3 = Num/Den

Ratio = (D3 - OldD3)/D3

End do

Report Results

Print *, i, ' iterations. D3 = ',D3

GoTo I00 t Back to get information for next calculation

200 Stop 'Normal end to program CharThick'

End
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